Search results for "multiblock copolymers"

showing 2 items of 2 documents

Dynamic Self-Consistent Field Approach for Studying Kinetic Processes in Multiblock Copolymer Melts

2020

The self-consistent field theory is a popular and highly successful theoretical framework for studying equilibrium (co)polymer systems at the mesoscopic level. Dynamic density functionals allow one to use this framework for studying dynamical processes in the diffusive, non-inertial regime. The central quantity in these approaches is the mobility function, which describes the effect of chain connectivity on the nonlocal response of monomers to thermodynamic driving fields. In a recent study [Mantha et al, Macromolecules 53, 3409 (2020)], we have developed a method to systematically construct mobility functions from reference fine-grained simulations. Here we focus on melts of linear chains …

Chemical Physics (physics.chem-ph)Physicsordering kineticsMesoscopic physicsPolymers and PlasticsField (physics)Thermodynamic equilibriumDynamic structure factorFOS: Physical sciencesNon-equilibrium thermodynamicsContext (language use)General ChemistryCondensed Matter - Soft Condensed MatterDynamic densityArticlelcsh:QD241-441lcsh:Organic chemistrydynamic density functional theoryPhysics - Chemical Physicstwo-length scale copolymerssingle chain structure factorSoft Condensed Matter (cond-mat.soft)Density functional theoryStatistical physicsmultiblock copolymersPolymers
researchProduct

Vascular Endothelial Growth Factor-Releasing Microspheres Based on Poly(ε-Caprolactone-PEG-ε-Caprolactone)-b-Poly(L-Lactide) Multiblock Copolymers In…

2020

Pancreatic islet transplantation is a promising advanced therapy that has been used to treat patients suffering from diabetes type 1. Traditionally, pancreatic islets are infused via the portal vein, which is subsequently intended to engraft in the liver. Severe immunosuppressive treatments are necessary, however, to prevent rejection of the transplanted islets. Novel approaches therefore have focused on encapsulation of the islets in biomaterial implants which can protect the islets and offer an organ-like environment. Vascularization of the device’s surface is a prerequisite for the survival and proper func- tioning of transplanted pancreatic islets. We are pursuing a prevascularization s…

Vascular Endothelial Growth Factor APDMS implantsTime FactorsDrug CompoundingPolyestersPharmaceutical Science02 engineering and technology030226 pharmacology & pharmacyPolyethylene Glycols03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePEG ratioHyaluronic acidHuman Umbilical Vein Endothelial CellsmedicineHumansDimethylpolysiloxanesHyaluronic Aciddiabetes type 1Cells CulturedCell Proliferationmultiblock copolymersDrug ImplantsDrug CarriersPancreatic isletsartificial pancreasBiomaterial021001 nanoscience & nanotechnologyControlled releaseVEGFMicrospheres3. Good healthVascular endothelial growth factorDrug Liberationmedicine.anatomical_structurechemistryPrinting Three-DimensionalAngiogenesis Inducing AgentsPancreatic islet transplantationcontrolled release PDMS implants VEGF multiblock copolymers diabetes type 1 artificial pancreas0210 nano-technologycontrolled releaseCaprolactoneBiomedical engineering
researchProduct